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Introduction
Lower-limb robotic assistive devices, (e.g., exoskeletons
and prostheses), provide net-positive power to the gait
cycle, which reduces the amount of biological power the
user must provide. Thus, the effectiveness of such de-
vices is often quantified as a reduction in the individ-
ual’s energetic cost [1–3]. Measures of energy cost have
also been used to identify optimal parameter settings
(e.g., actuation timing) for powered assistive devices in
real time [4, 5]. The current ‘state-of-the-art’ method
for estimating energetic cost during walking is indirect
calorimetry. The user wears a mask that covers his
or her nose and mouth, and an embedded flowmeter
measures oxygen consumption and carbon dioxide pro-
duction. However, this method is unsuitable for long-
term data collection due to the cumbersome equipment,
and the measurements obtained breath-by-breath are
sparsely sampled, noisy, and dynamically delayed from
the true energetic demands of the body. Due to these
challenges, it is common practice to collect 5-6 minutes
of respiratory measurements per condition, and to aver-
age the last 2-3 minutes of steady-state measurements
to yield one estimate of ‘ground truth’ energetic cost.
Given that quick and accurate estimates of energetic
cost are highly valuable to the design and evaluation
of assistive robotic devices, it would be beneficial to
estimate energy cost using other sensors with less vari-
ability and better temporal resolution.

Previous studies have attempted to predict energetic
cost during walking using accelerometers [6], heart rate
monitors [7], or a combination of both [8]. Other studies
have correlated electromyography (EMG) intensity to
energy expenditure during steady-state and non-steady
state cycling [9]. Finally, one commercially available
sensor incorporates autonomic nervous system param-
eters, such as near-skin temperature and electrodermal
activity (EDA), into its estimate of energetic cost [10].
In general, it has been shown that simple linear regres-
sion algorithms can predict energy expenditure from a
variety of physiological sensors (e.g., heart rate) and
mechanical sensors (e.g., accelerometry). However, no
one model has been able to predict energy expendi-
ture across all subjects and activities. Most studies
have only included one or two sensing modalities, and
have been unable to draw conclusions about how com-
binations of multiple signals (e.g., accelerometry, EMG,
EDA, heart rate) can be used to improve estimates of
energetic cost. The goal of this study was to predict en-
ergy cost across multiple subjects and activities using a
wide variety of physiological and mechanical signals.

Figure 1: Oxygen consumption (V̇O2
) and carbon diox-

ide production (V̇CO2
) were measured using a portable

respirometer. Heart rate (HR) was measured using a
wireless heart rate monitor strapped around the chest.
Surface electromyography (EMG) electrodes recorded
bilateral muscle activity from 8 lower limb muscles: glu-
teus maximus (GMAX), biceps femoris (BF), semitendi-
nosis (ST), rectus femoris (RF), vastus lateralis (VL),
medial gastrocnemius (MGAS), soleus (SOL), and tib-
ialis anterior (TA). Electrodermal activity (EDA), pe-
ripheral skin temperature and accelerations of the wrist
were recorded using bilateral wrist sensors. Inertial
measurement units (IMUs) placed on the trunk, hip,
and ankles measured 3-axis limb accelerations. Blood
oxygen saturation (SpO2), was measured by a pulse
oximeter secured to the subject’s right earlobe.

Methods
Data Collection
Three healthy subjects (2 male, 1 female, age
(mean±SD): 26.3±3.2 years, height: 1.76±0.16 m,
weight: 64.5±2.6 kg) walked on a treadmill at vari-
ous speeds (0.4-2.0 m/s) during three ambulation tasks:
level walking (LW), incline walking (IW), and back-
wards walking (BW). Subjects walked at each speed
for 6 minutes. Before the walking trials, subjects stood
quietly for 6 minutes while respiratory measurements
were collected. Subjects wore a variety of physiological
and mechanical sensors, depicted in Fig. 1.



Figure 2: Concatenated energetic cost data across all subjects and all ambulation tasks (LW=level walking,
IW=incline walking, BW=backwards walking). Measured energetic cost (from indirect calorimetry) is shown
in yellow; Ground truth energetic cost is shown in red; Estimated energetic cost is shown in blue.

Data Processing
We calculated measured energetic cost (in Watts) from
V̇O2

and V̇CO2
[11], and subtracted off the subject’s av-

erage standing energetic cost to yield net energetic cost.
The data were normalized to subject body mass. The
average of the final 3 minutes of measured energetic cost
data at each condition established the ‘ground truth’
energetic cost for that condition. To represent the over-
all magnitude of acceleration of each limb segment, we
computed the vector norm of the x, y, and z axes of
each accelerometer. To represent the activation pro-
file of each muscle, we generated EMG linear envelopes
by full-wave rectifying and filtering the raw signals. Ac-
celerometer magnitudes and EMG linear envelopes were
time-averaged using a sliding window average with win-
dow lengths of 10 seconds [12].

Results & Discussion
We calculated four multiple linear regression mod-
els containing different processed signal subsets us-
ing MATLAB. Subset 1 included measured energetic
cost (R2=0.77). Subset 2 included mechanical signals
only (EMG and accelerometry)(R2=0.88). Subset 3 in-
cluded physiological signals only (heart rate, electroder-
mal activity, and skin temperature)(R2=0.65). Subset
4 included both mechanical and physiological signals
(R2=0.93). The regression model trained with Subset 4
was used to predict energy cost across all subjects and
ambulation modes (Fig. 2). The estimated energetic
cost had less variability than measured energetic cost;
the root mean squared error (RMSE) between measured
energetic cost and ground truth was 1.42; the RMSE
between estimated energetic cost and ground truth was
0.74. Limitations of this work include the small sam-
ple size and limited number of activities. Future work

will focus on more advanced feature extraction and pre-
diction algorithms. The sensors used to predict ener-
getic cost in this study are fully portable, and could
be used in the future during over-ground or real-world
experiments with individuals using lower-limb assistive
robotic devices in real time.
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